Preview

Педиатрическая фармакология

Расширенный поиск

И СНОВА О ПРОБИОТИКАХ: НОВЫЕ ШТАММЫ, НОВЫЕ ПРЕИМУЩЕСТВА, НОВЫЕ ВОЗМОЖНОСТИ

https://doi.org/10.15690/pf.v9i2.243

Полный текст:

Аннотация

Применение пробиотиков становится все более распространенным, параллельно увеличивается и число декларируемых положительных эффектов, связанных с введением пробиотических бактерий в состав продуктов. Тем не менее, существует проблема недостаточной информированности как врачей, так и пациентов об особенностях отдельных штаммов и наличии доказательной базы их положительных эффектов. Особое значение это приобретает в питании грудных детей, где применение пробиотиков в составе продуктов также становится все более распространенным. В статье приводится информация о новых пробиотических штаммах, разработанных в Новой Зеландии, а также данные научных исследований, подтверждающих эффективность и безопасность этих штаммов. 

Об авторах

Дж. Деккер
Научно-иcследовательский центр компании Fonterra, Новая Зеландия
Новая Зеландия


С. Е. Украинцев
Научно-иcследовательский центр компании Fonterra, Новая Зеландия
Новая Зеландия
старший научный сотрудник научно-иcследовательского центра компании Fonterra


Список литературы

1. Prasad J., Gill H. S., Smart J., Gopal P. K. Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. International Dairy Journal. 1998; 8: 993–1002.

2. FAO/WHO. 1–34 Joint food and agriculture organization of the united nations and world health organization working group. Cordoba, Argentina. 2001.

3. Zhou J. S. et al. Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food Chem Toxicol. 2000; 38: 153–161.

4. Zhou J. S. et al. Safety assessment of potential probiotic lactic acid bacterial strains Lactobacillus rhamnosus HN001, L. acidophilus HN017 and Bifidobacterium lactis HN019 in BALB/c mice. Int J Food Microbiol. 2000; 56: 87–96.

5. Shu Q. et al. Probiotic lactic acid bacteria (Lactobacillus acidophilus HN017, Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019) have no adverse effects on the health of mice. International Dairy Journal. 1999; 9: 831–836.

6. Zhou J. S., Gill H. S. Immunostimulatory probiotic Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019 do not induce pathological inflammation in mouse model of experimental autoimmune thyroiditis. International Journal of Food Microbiology. 2005; 103: 97–104.

7. Zhou J. S., Gopal P. K., Gill H. S. Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Microbiol. 2001; 63: 81–90.

8. Zhou J. S., Rutherfurd K. J., Gill H. S. Inability of probiotic bacterial strains Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019 to induce human platelet aggregation in vitro. J Food Prot. 2005; 68: 2459–2464.

9. Zhou J. S., Pillidge C. J., Gopal P. K., Gill H. S. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. International Journal of Food Microbiology. 2005; 98: 211–217.

10. Tannock G. W. et al. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Applied and Environmental Microbiology. 2000; 66: 2578–2588.

11. Gopal P. K., Sullivan P. A., Smart J. B. Utilisation of galactooligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. International Dairy Journal. 2001; 11: 19–25.

12. Walter J. et al. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using groupspecific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2001; 67: 2578–2585.

13. Gopal P. K., Prasad J., Gill H. S. Effects of the consumption of Bifidobacterium lactis HN019 (DR10TM) and galactooligosaccharides on the microflora of the gastrointestinal tract in human subjects. Nutrition Research. 2003; 23: 1313–1328.

14. Gill H. S., Shu Q., Lin H. et al. Protection against translocating Salmonella typhimurium infection in mice by feeding the immunoenhancing probiotic Lactobacillus rhamnosus strain HN001. Med Microbiol Immunol (Berl). 2001; 190: 97–104.

15. Gopal P. K., Prasad J., Smart J., Gill H. S. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol. 2001; 67: 207–216.

16. Shu Q., Qu F., Gill H. S. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J Pediatr Gastroenterol Nutr. 2001; 33: 171–177.

17. Shu Q., Gill H. S. A dietary probiotic Bifidobacterium lactis (HN019) reduces the severity of Escherichia coli O157: H7 infection in mice. Medical Microbiology and Immunology. 2001; 189: 147–152.

18. Shu Q., Gill H. S. Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20) against Escherichia coli O157: H7 infection in mice. FEMS Immunol Med Microbiol. 2002; 34: 59–64.

19. Lahtinen S. et al. Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM modifies subpopulations of fecal lactobacilli and Clostridium difficile. AGE. 2011; 1–11.

20. Gill H. S., Rutherfurd K. J., Cross M. L. Dietary probiotic supplemen tation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J Clin Immunol. 2001; 21: 264–271.

21. Sheih Y. H., Chiang B. L., Wang L. H. et al. Systemic immunityenhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J Am Coll Nutr. 2001; 20: 149–156.

22. Ibrahim F. et al. Probiotics and immunosenescence: cheese as a carrier. FEMS Immunology Medical Microbiology. 2010; 59: 53–59.

23. Chiang B. L., Sheih Y. H., Wang L. H. et al. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr. 2000; 54: 849–855.

24. Arunachalam K., Gill H. S., Chandra R. K. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur J Clin Nutr. 2000; 54: 263–267.

25. Gill H. S., Rutherfurd K. J., Prasad J., Gopal P. K. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). British Journal of Nutrition. 2000; 83: 167–176.

26. Gill H. S., Rutherfurd K. J. Viability and dose-response studies on the effects of the immunoenhancing lactic acid bacterium Lactobacillus rhamnosus in mice. Br J Nutr. 2001; 86: 285–289.

27. Gill H. S., Rutherfurd K. J. Immune enhancement conferred by oral delivery of Lactobacillus rhamnosus HN001 in different milkbased substrates. Journal of Dairy Research. 2001; 68: 611–616.

28. Gill H. S., Rutherfurd K. J. Probiotic supplementation to enhance natural immunity in the elderly: effects of a newly characterized immunostimulatory strain Lactobacillus rhamnosus HN001 (DR20 (TM)) on leucocyte phagocytosis. Nutrition Research. 2001; 21: 183–189.

29. Gill H. S., Rutherfurd K. J., Cross M. L., Gopal P. K. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr. 2001; 74: 833–839.

30. Anderson R. C., Cookson A. L., McNabb W. C. et al. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiology Letters. 2010; 309: 184–192.

31. Rescigno M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends in Immunology. 2011; 32: 256–264.

32. Cereijido M. et al. New diseases derived or associated with the tight junction. Archives of Medical Research. 2007; 38: 465–478.

33. Maruti S. S., Lampe J. W., Potter J. D. et al. Prospective study of bowel motility and related factors on breast cancer risk. Cancer Epidemiology Biomarkers Prevention. 2008; 17: 1746–1750.

34. Lewis S. J., Heaton K. W. The metabolic consequences of slow colonic transit. Am J Gastroenterol. 1999; 94: 2010–2016.

35. Rao S. S. C. et al. Evaluation of gastrointestinal transit in clinical practice: position paper of the american and european neurogastroenterology and motility societies. Neurogastroenterology Motility. 2011; 23 (1): 8–23.

36. Waller P. A. et al. Dose-response effect of Bifidobacterium lactis HN019 on whole gut transit time and functional gastrointestinal symptoms in adults. Scandinavian Journal of Gastroenterology. 2011; 46: 1057–1064.

37. Collado M. C., Delgado S., Maldonado A., Rodriguez J. M. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Letters in Applied Microbiology. 2009; 48: 523–528.

38. Martin R., Heilig G. H. J., Zoetendal E. G. et al. Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. Journal of Applied Microbiology. 2007; 103: 2638–2644.

39. Sjogren Y. M. et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clinical Experimental Allergy. 2009; 39: 1842–1851.

40. Penders J. et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006; 118: 511–521.

41. Sazawal S. et al. Prebiotic and probiotic fortified milk in prevention of morbidities among children: community-based, randomized, double-blind, controlled trial. PLoS ONE. 2010; 5 (8): 12164.

42. Sazawal S. et al. Effect of fortification of milk with probiotic Bifidobacterium lactis Hn019 (Dr-10) and galacto-oligosaccharides on growth and development of children 1–4 years — a double masked randomized controlled trial. Journal Pediatric Gastroenterology Nutrition. 2004; 39: 479.

43. Dekker J. W. et al. Safety aspects of probiotic bacterial strains Lactobacillus rhamnosus HN001 and Bifidobacterium animalis subsp. lactis HN019 in human infants aged 0–2 years. International Dairy Journal. 2009; 19: 149–154.

44. Wickens K. et al. A differential effect of 2 probiotics in the prevention of eczema and atopy: a double-blind, randomized, placebo-controlled trial. Journal Allergy Clinical Immunology. 2008; 122: 788–794.

45. Prescott S. L. et al. Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-gamma and breast milk transforming growth factorbeta and immunoglobin A detection. Clinical Experimental Allergy. 2008; 38: 1606–1614.

46. Asher M. I. et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry crosssectional surveys. Lancet. 2006; 368: 733–743.

47. Williams H. et al. Worldwide variations in the prevalence of symptoms of atopic eczema in the international study of asthma and allergies in childhood. Journal Allergy Clinical Immunology. 1999; 103: 125–138.

48. Joohee L., David S., Leonard B. Metaanalysis of clinical trials of probiotics for prevention and treatment of pediatric atopic dermatitis. Journal Allergy Clinical Immunology. 2008; 121: 116–121.

49. Boyle R. J., Bath-Hextall F. J., Leonardi-Bee J. et al. Probiotics for the treatment of eczema: a systematic review. Clinical Experimental Allergy. 2009; 39: 1117–1127.

50. Kalliomaki M., Salminen S., Poussa T., Isolauri E. Probiotics during the first 7 years of life: A cumulative risk reduction of eczema in a randomized, placebo-controlled trial. Journal Allergy Clinical Immunology. 2007; 119: 1019–1021.

51. Kalliomaki M., Salminen S., Poussa T. et al. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet. 2003; 361: 1869–1871.

52. Kalliomaki M. et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001; 357: 1076–1079.

53. Prescott S. L. et al. Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-g and breast milk transforming growth factorb2 and immunoglobin A detection. Clin Exp Allergy. 2008; 38 (10): 1606–1614.

54. Herberth G. et al. Reduced IFN-- and enhanced IL-4-producing CD4+ cord blood T cells are associated with a higher risk for atopic dermatitis during the first 2 yr of life. Pediatric Allergy Immunology. 2010; 21: 5–13.

55. Sistek D. et al. Is the effect of probiotics on atopic dermatitis confined to food sensitized children? Clinical Experimental Allergy. 2006; 36: 629–633.

56. Thomas D. J. et al. Lactobacillus rhamnosus HN001 attenuates allergy development in a pig model. PLoS ONE. 2011.

57. Shah N. P., Ding W. K., Fallourd M. J., Leyer G. Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. Journal Food Science. 2010; 75: 278–282.


Для цитирования:


Деккер Д., Украинцев С.Е. И СНОВА О ПРОБИОТИКАХ: НОВЫЕ ШТАММЫ, НОВЫЕ ПРЕИМУЩЕСТВА, НОВЫЕ ВОЗМОЖНОСТИ. Педиатрическая фармакология. 2012;9(2):37-45. https://doi.org/10.15690/pf.v9i2.243

For citation:


Dekker J., Ukraintsev S. PROBIOTICS REVISITED: NEW STRAINS, NEW BENEFITS, NEW OPPORTUNITIES. Pediatric pharmacology. 2012;9(2):37-45. https://doi.org/10.15690/pf.v9i2.243

Просмотров: 192


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)