Preview

Педиатрическая фармакология

Расширенный поиск

Генетическая детерминация формирования бронхолегочной дисплазии: за и против

https://doi.org/10.15690/pf.v14i1.1698

Полный текст:

Аннотация

В настоящее время активно ведутся научно-исследовательские работы по выявлению генетических факторов риска развития бронхолегочной дисплазии (БЛД) у недоношенных детей, включающих полиморфизм генов, кодирующих сурфактанты, матриксные металлопротеиназы, цитокины, факторы роста, компоненты антиоксидантной защиты организма. В обзоре представлены результаты зарубежных и отечественных генетических исследований в этой области, проводимых с целью прогнозирования возможного формирования БЛД у недоношенных детей и обеспечения персонализированного подхода к ведению таких пациентов.

Об авторах

В. К. Пожарищенская
Национальный научно-практический центр здоровья детей Минздрава России
Россия
Москва, Российская Федерация


И. В. Давыдова
Национальный научно-практический центр здоровья детей Минздрава России Первый Московский государственный медицинский университет им. И.М. Сеченова
Россия

доктор медицинских наук, заведующая отделением восстановительного лечения детей раннего возраста с перинатальной патологией НИИ педиатрии ФГАУ «ННПЦЗД» Минздрава России, профессор кафедры аллергологии и клинической иммунологии педиатрического факультета Первого МГМУ им. И.М. Сеченова Адрес: 119991, Москва, Ломоносовский пр-т, д. 2, стр. 2, тел.: +7 (499) 134-01-67



К. В. Савостьянов
Национальный научно-практический центр здоровья детей Минздрава России
Россия
Москва, Российская Федерация


Л. С. Намазова-Баранова
Национальный научно-практический центр здоровья детей Минздрава России Первый Московский государственный медицинский университет им. И.М. Сеченова Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
Россия
Москва, Российская Федерация


Е. Б. Павлинова
Сургутский государственный университет ХМАО-Югры
Россия
Сургут, Российская Федерация


А. В. Пушков
Национальный научно-практический центр здоровья детей Минздрава России
Россия

Москва, Российская Федерация



Список литературы

1. Давыдова И.В., Аникин А.В., Кустова О.В., и др. Бронхолегочная дисплазия в постсурфактантную эру: результаты объективной оценки течения заболевания // Вопросы современной педиатрии. — 2015. — Т. 14. — № 4 — С. 514–518. [Davydova IV, Anikin AV, Kustova OV, et al. Bronchopulmonary dysplasia in postsurfactant era: results of an objective assessment of the disease. Current pediatrics. 2015;14(4):514–518. (In Russ).] doi: 10.15690/vsp.v14.i4.1392.

2. Баранов А.А., Намазова-Баранова Л.С., Давыдова И.В. Современные подходы к профилактике, диагностике и лечению бронхолегочной дисплазии. — М.: ПедиатрЪ; 2013. — С. 18–31. [Baranov AA, Namazova-Baranova LS, Davydova IV. Sovremennye podkhody k profilaktike, diagnostike i lecheniyu bronkholegochnoi displazii. Moscow: Pediatr»»; 2013. p. 18–31. (In Russ).]

3. Бойцова Е.В., Запевалова Е.Ю., Овсянников Д.Ю. Респираторные, неврологические и структурно-функциональные последствия бронхолегочной дисплазии у детей и взрослых // Неонатология: новости, мнения, обучение. — 2014. — № 1 — С. 71–79. [Boytsova EV, Zapevalova EYu, Ovsyannikov DYu. Respiratory, neurological and structure- functional sequellae of bronchopulmonary dysplasia in children and adults. Neonatologiya: novosti, mneniya, obuchenie. 2014;(1):71–79. (In Russ).]

4. Беляева И.А., Давыдова И.В. Роль генетических факторов в формировании бронхолегочной дисплазии у детей // Вопросы диагностики в педиатрии. — 2012. — Т. 4. — № 5 — С. 5–9. [Belyaeva IA, Davydova IV. The role of genetic factors in the formation of bronchopulmonary dysplasia in children. Pediatric diagnostics. 2012;4(5):5–9. (In Russ).]

5. Павлинова Е.Б. Анализ полиморфизма генов ферментов антиоксидантной системы у недоношенных новорожденных из группы риска по формированию бронхолегочной дисплазии // Вопросы диагностики в педиатрии. — 2011. — Т. 3. — № 5 — С. 14–19. [Pavlinova EB. Analysis of gene polymorphisms of the antioxidant enzyme system in preterm infants at risk of bronchopulmonary dysplasia formation. Pediatric diagnostics. 2011;3(5):14–19. (In Russ).]

6. Панов П.В. Перинатальные и иммуногенетические факторы риска бронхолегочной дисплазии: Автореф. дис. … канд. мед. наук. — М.; 2015. — 22 с. [Panov PV. Perinatal’nye i immunogeneticheskie faktory riska bronkholegochnoi displazii. [dissertation abstract] Moscow; 2015. 22 p. (In Russ).]

7. Панченко А.С. Патогенетическая характеристика и прогнозирование формирования бронхолегочной дисплазии у недоношенных детей: Автореф. дис. … докт. мед. наук. — Иркутск; 2015. — 43 с. [Panchenko AS. Patogeneticheskaya kharakteristika i prognozirovanie formirovaniya bronkholegochnoi displazii u nedonoshennykh detei. [dissertation abstract] Irkutsk; 2015. 43 p. (In Russ).]

8. Ramet M, Haataja R, Marttila R, et al. Association between the surfactant protein A (SP-A) gene locus and respiratory-distress syndrome in the Finnish population. Am J Hum Genet. 2000; 66(5):1569–1579. doi: 10.1086/302906.

9. Hadchouel A, Decobert F, Franco-Montoya ML, et al. Matrix metalloproteinase gene polymorphisms and bronchopulmonary dysplasia: identification of MMP16 as a new player in lung development. PLoS One. 2008;3(9):e3188. doi: 10.1371/journal.pone.0003188.

10. Floros J, Fan R, Diangelo S, et al. Surfactant protein (SP) B associations and interactions with SP-A in white and black subjects with respiratory distress syndrome. Pediatr Int. 2001;43(6):567–576. doi: 10.1046/j.1442-200x.2001.01474.x.

11. Nogee LM, Dunbar AE 3rd, Wert SE, et al. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med. 2001;344(8):573–579. doi: 10.1056/NEJM200102223440805.

12. Nogee LM, Dunbar AE 3rd, Wert S, et al. Mutations in the surfactant protein C gene associated with interstitial lung disease. Chest. 2002;121(3 Suppl):20S–21S. doi: 10.1378/chest.121.3_suppl.20S.

13. Thomas AQ, Lane K, Phillips J 3rd, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med. 2002;165(9):1322–1328. doi: 10.1164/rccm.200112-123OC.

14. Hallman M, Haataja R. Genetic influences and neonatal lung disease. Semin Neonatol. 2003;8(1):19–27. doi: 10.1016/S1084-2756(02)00196-3.

15. Bokodi G, Derzbach L, Banyasz I, et al. Association of interferon gamma T+874A and interleukin 12 p40 promoter CTCTAA/GC polymorphism with the need for respiratory support and perinatal complications in low birthweight neonates. Arch Dis Child Fetal Neonatal Ed. 2007;92(1):F25–29. doi: 10.1136/adc.2005.086421.

16. Strassberg SS, Cristea IA, Qian D, Parton LA. Single nucleotide polymorphisms of tumor necrosis factor-alpha and the susceptibility to bronchopulmonary dysplasia. Pediatr Pulmonol. 2007;42(1): 29–36. doi: 10.1002/ppul.20526.

17. Gower WA, Nogee LM. Candidate gene analysis of the surfactant protein D gene in pediatric diffuse lung disease. J Pediatr. 2013;163(6):1778–1780. doi: 10.1016/j.jpeds.2013.06.063.

18. Yin X, Meng F, Wang Y, et al. Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han ethnic population. Int J Clin Exp Pathol. 2013;6(2):267–272.

19. Cai BH, Chang LW, Li WB, et al. Association of surfactant protein B gene polymorphisms (C/A-18, C/T1580, intron 4 and A/G9306) and haplotypes with bronchopulmonary dysplasia in Chinese Han population. J Huazhong Univ Sci Technolog Med Sci. 2013;33(3):323–328. doi: 10.1007/s11596-013-1118-7.

20. Jo HS. Genetic risk factors associated with respiratory distress syndrome. Korean J Pediatr. 2014;57(4):157–163. doi: 10.3345/kjp.2014.57.4.157.

21. Hamvas A, Trusgnich M, Brice H, et al. Population based screening for rare mutations: high throughput DNA extraction and molecular amplification from Guthrie cards. Pediatr Res. 2001;50(5): 666–668. doi: 10.1203/00006450-200111000-00021.

22. Garmany TH, Wambach JA, Heins HB, et al. Population and disease based prevalence of the common mutations associated with surfactant deficiency. Pediatr Res. 2008;63(8):645– 649. doi: 10.1203/PDR.0b013e31816fdbeb.

23. Hamvas A, Wegner DJ, Carlson CS, et al. Comprehensive genetic variant discovery in the surfactant protein B gene. Pediatr Res. 2007;62(2):170–175. doi: 10.1203/PDR.0b013e3180a03232.

24. Marttila R, Haataja R, Ramet M, et al. Surfactant protein B polymorphism and respiratory distress syndrome in premature twins. Hum Genet. 2003;112(1):182–183. doi: 10.1007/s00439-002-0835-y.

25. Marttila R, Haataja R, Guttentag S, Hallman M. Surfactant protein A and B genetic variants in respiratory distress syndrome in singletons and twins. Am J Respir Crit Care Med. 2003;168(10): 1216–1222. doi: 10.1164/rccm.200304-524OC.

26. Cameron HS, Somaschini M, Carrera P, et al. A common mutation in the surfactant protein C gene associated with lung disease. J Pediatr. 2005;146(3):370–375. doi: 10.1016/j.jpeds.2004.10.028.

27. Kropski JA, Lawson WE, Young LR, Blackwell TS. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech. 2013;6(1):9–17. doi: 10.1242/dmm.010736.

28. Hamvas A, Cole FS, Nogee LM. Genetic disorders of surfactant proteins. Neonatology. 2007;91(4):311–317. doi: 10.1159/000101347.

29. Lahti M, Marttila R, Hallman M. Surfactant protein C gene variation in the Finnish population — association with perinatal respiratory disease. Eur J Hum Genet. 2004;12(4):312–320. doi: 10.1038/sj.ejhg.5201137.

30. Shulenin S, Nogee LM, Annilo T, et al. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med. 2004;350(13):1296–1303. doi: 10.1056/NEJMoa032178.

31. Brasch F, Schimanski S, Muhlfeld C, et al. Alteration of the pulmonary surfactant system in full-term infants with hereditary ABCA3 deficiency. Am J Respir Crit Care Med. 2006; (5):571–578. doi: 10.1164/rccm.200509-1535OC.

32. Bullard JE, Wert SE, Whitsett JA, et al. ABCA3 mutations associated with pediatric interstitial lung disease. Am J Respir Crit Care Med. 2005;172(8):1026–1031. doi: 10.1164/rccm.200503-504OC.

33. Doan ML, Guillerman RP, Dishop MK, et al. Clinical, radiological and pathological features of ABCA3 mutations in children. Thorax. 2008;63(4):366–373. doi: 10.1136/thx.2007.083766.

34. Tian W, Chen X, Qin H, et al. The haplotype TGGAG in the ABCA3 gene increases the risk of respiratory distress syndrome in preterm infants in Southern China. Pediatr Neonatol. 2016;57(3):188–194. doi: 10.1016/j.pedneo.2015.09.002.

35. Boggaram V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond). 2009;116(1): 27–35. doi: 10.1042/CS20080068.

36. Whitsett JA, Wert SE, Trapnell BC. Genetic disorders influencing lung formation and function at birth. Hum Mol Genet. 2004;13 Spec No 2:R207–215. doi: 10.1093/hmg/ddh252.

37. Martis PC, Whitsett JA, Xu Y, et al. C/EBPalpha is required for lung maturation at birth. Development. 2006;133(6):1155–1164. doi: 10.1242/dev.02273.

38. Hamvas A. Current technology in the diagnosis of developmentally related lung disorders. Neonatology. 2012;101(4):353–359. doi: 10.1159/000337356.

39. Haataja R, Ramet M, Marttila R, Hallman M. Surfactant proteins A and B as interactive genetic determinants of neonatal respiratory distress syndrome. Hum Mol Genet. 2000;9(18): 2751–2760. doi: 10.1093/hmg/9.18.2751.

40. Floros J, Fan R, Matthews A, et al. Family-based transmission disequilibrium test (TDT) and case-control association studies reveal surfactant protein A (SP-A) susceptibility alleles for respiratory distress syndrome (RDS) and possible race differences. Clin Genet. 2001;60(3):178–187. doi: 10.1034/j.1399-0004.2001.600303.x.

41. Jo HS, Cho SI, Chang YH, et al. Surfactant protein A associated with respiratory distress syndrome in Korean preterm infants: evidence of ethnic difference. Neonatology. 2013;103(1):44–47. doi: 10.1159/000342498.

42. Marttila R, Haataja R, Ramet M, et al. Surfactant protein A gene locus and respiratory distress syndrome in Finnish premature twin pairs. Ann Med. 2003;35(5):344–352. doi: 10.1080/07853890310006389.

43. Thomas NJ, Fan R, Diangelo S, et al. Haplotypes of the surfactant protein genes A and D as susceptibility factors for the development of respiratory distress syndrome. Acta Paediatr. 2007;96(7): 985–989. doi: 10.1111/j.1651-2227.2007.00319.x.

44. Lee KS, Kim YH, Suk JS, et al. Allele distri bution and frequency of human surfactant protein A1 in Korean neonates. J Korean Pediatr Soc. 2002;45:1497–1502.

45. Kim NC, Yoon HC, Suk JS, et al. Allele distribution and frequency of human surfactant protein A2 in Korean neonates. J Korean Pediatr Soc. 2003;46:340–344.

46. Silveyra P, Floros J. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury. Front Biosci (Landmark Ed). 2012;17:407–429. doi: 10.2741/3935.

47. Rezvani M, Wilde J, Vitt P, et al. Association of a FGFR-4 gene polymorphism with bronchopulmonary dysplasia and neonatal respiratory distress. Dis Markers. 2013;35(6):633–640. doi: 10.1155/2013/932356.

48. Lin HC, Tsai FJ, Tsai CH, et al. Cytokine polymorphisms and chronic lung disease in small preterm infants. Arch Dis Child Fetal Neonatal Ed. 2005;90(1):F93–F94. doi: 10.1136/adc.2004.061713.

49. Ferreira PJ1, Bunch TJ, Albertine KH, Carlton DP. Circulating neutrophil concentration and respiratory distress in premature infants. J Pediatr. 2000;136(4):466–472. doi: 10.1016/S0022-3476(00)90009-X.

50. Nupponen I, Pesonen E, Andersson S, et al. Neutrophil activation in preterm infants who have respiratory distress syndrome. Pediatrics. 2002;110(1 Pt 1):36–41. doi: 10.1542/peds.110.1.36.

51. Speer CP. Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med. 2006;11(5): 354–362. doi: 10.1016/j.siny.2006.03.004.

52. Watterberg KL, Demers LM, Scott SM, Murphy S. Chorioamnio nitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics. 1996;97(2):210–215.

53. Kramer BW. Antenatal inflammation and lung injury: prenatal origin of neonatal disease. J Perinatol. 2008;28 Suppl 1:S21–S27. doi: 10.1038/jp.2008.46.

54. Jobe AH. Blood cytokines and BPD. J Pediatr. 2009;154(1):A2. doi: 10.1016/j.jpeds.2008.11.020.

55. Paananen R, Husa AK, Vuolteenaho R, et al. Blood cytokines during the perinatal period in very preterm infants: relationship of inflammatory response and bronchopulmonary dysplasia. J Pediatr. 2009;154(1):39–43.e3. doi: 10.1016/j.jpeds.2008.07.012.

56. Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy—review of a new approach. Pharmacol Rev. 2003;55(2):241–269. doi: 10.1124/pr.55.2.4.

57. Capasso M, Avvisati RA, Piscopo C, et al. Cytokine gene polymorphisms in Italian preterm infants: association between interleukin-10 -1082 G/A polymorphism and respiratory distress syndrome. Pediatr Res. 2007;61(3):313–317. doi: 10.1203/pdr.0b013e318030d108.

58. McGowan EC, Kostadinov S, McLean K, et al. Placental IL-10 dysregulation and association with bronchopulmonary dysplasia risk. Pediatr Res. 2009;66(4):455–460. doi: 10.1203/PDR.0b013e3181b3b0fa.

59. Floros J, Londono D, Gordon D, et al. IL-18R1 and IL-18RAP SNPs may be associated with bronchopulmonary dysplasia in African-American infants. Pediatr Res. 2012;71(1):107–114. doi: 10.1038/pr.2011.14.

60. Shaw GM, O’Brodovich HM. O’Brodovich. Progress in understanding the genetics of Bronchopulmonary Dysplasia. Semin Perinatol. 2013;37(2):85–93. doi: 10.1053/j.semperi.2013.01.004.

61. Usuda T, Kobayashi T, Sakakibara S, et al. Interleukin-6 polymorphism and bronchopulmonary dysplasia risk in very low-birthweight infants. Pediatr Int. 2012;54(4):471–475. doi: 10.1111/j.1442-200X.2012.03625.x.

62. Krueger M, Heinzmann A, Mailaparambil B, et al. Poly morphisms of interleukin 18 in the genetics of preterm birth and bronchopulmonary dysplasia. Arch Dis Child Fetal Neonatal Ed. 2011;96(4):F299–F300. doi: 10.1136/adc.2009.174862.

63. Huusko JM, Karjalainen MK, Mahlman M, et al. A study of genes encoding cytokines (IL6, IL10, TNF), cytokine receptors (IL6R, IL6ST), and glucocorticoid receptor (NR3C1) and susceptibi lity to bronchopulmonary dysplasia. BMC Med Genet. 2014;15:120. doi: 10.1186/s12881-014-0120-7.

64. Kazzi SN, Kim UO, Quasney MW, Buhimschi I. Polymorphism of tumor necrosis factor and risk and severity of bronchopulmonary dysplasia among very low birth weight infants. Pediatrics. 2004; 114(2):e243–248. doi: 10.1542/peds.114.2.e243.

65. Kazzi SN1, Tromp G, Quasney MW, Buhimschi IA. Haplotypes of tumor necrosis factor gene and tracheal aspirate fluid levels of tumor necrosis factor-alpha in preterm infants. Pediatr Res. 2008;64(2):165–170. doi: 10.1203/PDR.0b013e31817758f4.

66. Elhawary NA, Tayeb MT, Abdel-Ghafar S, et al. TNF-238 polymorphism may predict bronchopulmonary dysplasia among preterm infants in the Egyptian population. Pediatr Pulmonol. 2013;48(7):699–706. doi: 10.1002/ppul.22748.

67. Mailaparambil B, Krueger M, Heizmann U, et al. Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia. Dis Markers. 2010;29(1):1–9. doi: 10.3233/DMA-2010-0720.

68. Lin HC, Su BH, Chang JS, et al. Nonassociation of interleukin 4 intron 3 and 590 promoter polymorphisms with bronchopulmonary dysplasia for ventilated preterm infants. Biol Neonate. 2005;87(3):181–186. doi: 10.1159/000082937.

69. Ахматов Н.К., Киселевский М.В. Врожденный иммунитет: противоопухолевый и противоинфекционный . — М.: Практическая медицина; 2008. — 255 с. [Akhmatov NK, Kiselevskii MV. Vrozhdennyi immunitet: protivoopukholevyi i protivoinfektsionnyi. Moscow: Prakticheskaya meditsina; 2008. 255 p. (In Russ).]

70. Лебедева О.П., Калуцкий П.В., Пахомов С.П., и др. Врожденный иммунитет женских половых путей и его гормональная регуляция // Научные Ведомости Белгородского государственного университета. Серия: Медицина. Фармация. — 2009. — № 12 — С. 25–30. [Lebedeva OP, Kalutskii PV, Pakhomov SP, et al. Vrozhdennyi immunitet zhenskikh polovykh putei i ego gormonal’naya regulyatsiya. Nauchnye Vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Meditsina. Farmatsiya. 2009;(12):25–30. (In Russ).]

71. Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–1103. doi: 10.1038/35074106.

72. Hemmi H, Takeuchi O, Kawai T, et al. Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–745. doi: 10.1038/35047123.

73. Sampath V, Garland JS, Le M, et al. A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatr Pulmonol. 2012;47(5):460–468. doi: 10.1002/ppul.21568.

74. Lavoie PM, Ladd M, Hirschfeld AF, et al. Influence of common non-synonymous Toll-like receptor 4 polymorphisms on bronchopulmonary dysplasia and prematurity in human infants. PLoS One. 2012;7(2):e31351. doi: 10.1371/journal.pone.0031351.

75. Malash AH, Ali AA, Samy RM, Shamma R. Association of TLR polymorphisms with bronchopulmonary dysplasia. Gene. 2016; 592(1):23–28. doi: 10.1016/j.gene.2016.07.049.

76. Karagianni P, Rallis D, Fidani L, et al. Glutathion-S-Transfera - se P1 polymorphisms association with broncopulmonary dysplasia in preterm infants. Hippokratia. 2013;17(4):363–367.

77. Wang X, Li W, Liu W, et al. GSTM1 and GSTT1 gene polymorphisms as major risk factors for bronchopulmonary dysplasia in a Chinese Han population. Gene. 2014;533(1):48–51. doi: 10.1016/j.gene.2013.10.004.

78. Cole FS, Hamvas A, Nogee LM. Genetic disorders of neonatal respiratory function. Pediatr Res. 2001;50(2):157–162. doi: 10.1203/00006450-200108000-00001.

79. Bhandari V, Bizzarro MJ, Shetty A, et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics. 2006;117(6):1901–1906. doi: 10.1542/peds.2005–1414.

80. Rova M, Haataja R, Marttila R, et al. Data mining and multiparameter analysis of lung surfactant protein genes in bronchopulmonary dysplasia. Hum Mol Genet. 2004;13(11):1095–1104. doi: 10.1093/hmg/ddh132.

81. Hadchouel A, Decobert F, Franco-Montoya ML, et al. Matrix metalloproteinase gene polymorphisms and bronchopulmonary dysplasia: identification of MMP16 as a new player in lung development. PLoS One. 2008;3(9):e3188. doi: 10.1371/journal.pone.0003188.

82. Manar MH, Brown MR, Gauthier TW, Brown LA. Association of glutathione-S- transferase-P1 (GST-P1) polymorphisms with bronchopulmonary dysplasia. J Perinatol. 2004;24(1):30–35. doi: 10.1038/sj.jp.7211020.

83. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med. 2009;47(4):344–356. doi: 10.1016/j.freeradbiomed.2009.05.018.

84. Koide S, Kugiyama K, Sugiyama S, et al. Association of polymorphism in glutamate- cysteine ligase catalytic subunit gene with coronary vasomotor dysfunction and myocardial infarction. J Am Coll Cardiol. 2003;41(4):539–545. doi: 10.1016/S0735-1097(02)02866-8.

85. Nakamura S, Sugiyama S, Fujioka D, et al. Polymorphism in glutamate-cysteine ligase modifier subunit gene is associated with impairment of nitric oxide-mediated coronary vasomotor function. Circulation. 2003;108(12):1425–1427. doi: 10.1161/01.CIR.0000091255.63645.98.

86. Chakraborti S, Mandal M, Das S, et al. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem. 2003;253 (1–2):269–285. doi: 10.1023/a:1026028303196.

87. Siedlinski M, Postma DS, van Diemen CC, et al. Lung function loss, smoking, vitamin C intake, and polymorphisms of the glutamate – cysteine ligase genes. Am J Respir Crit Care Med. 2008;178(1):13–19. doi: 10.1164/rccm.200711-1749OC.

88. Dizdar EA, Uras N, Oguz S, et al. Total antioxidant capacity and total oxidant status after surfactant treatment in preterm infants with respiratory distress syndrome. Ann Clin Biochem. 2011;48 (Pt 5):462–467. doi: 10.1258/acb.2011.010285.

89. Nassi N, Ponziani V, Becatti M, et al. Anti-oxidant enzymes and related elements in term and preterm newborns. Pediatr Int. 2009;51(2):183–187. doi: 10.1111/j.1442-200X.2008.02662.x.

90. Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 2003; 167(12):1600–1619. doi: 10.1164/rccm.200212-1479SO.

91. Павлинова Е.Б. Обоснование системы этапной профилактики, диагностики и прогнозирования бронхолегочной дисплазии у недоношенных детей: Автореф. дис. … докт. мед. наук. — М.; 2012. — 47 с. [Pavlinova EB. Obosnovanie sistemy etapnoi profilaktiki, diagnostiki i prognozirovaniya bronkholegochnoi displazii u nedonoshennykh detei. [dissertation abstract] Moscow; 2012. 47 p. (In Russ).]

92. Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev. 2007;87(1):69–98. doi: 10.1152/physrev.00022.2006.

93. Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia. 2005;50(4):329–339. doi: 10.1002/glia.20169.

94. Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med. 2004;37(6):768–784. doi: 10.1016/j.freeradbiomed.2004.06.008.

95. Давыдова И.В., Яцык Г.В., Бершова Т.В., и др. Матриксные металлопротеиназы как маркеры формирования бронхолегочной дисплазии у детей // Пульмонология. — 2009. — № 4 — С. 80–84. [Davydova IV, Yatsyk GV, Bershova TV, et al. Matriksnye metalloproteinazy kak markery formirovaniya bronkholegochnoi displazii u detei. Pul’monologiya. 2009;(4):80–84. (In Russ).]

96. Somaschini M, Castiglioni E, Volonteri C, et al. Genetic predisposing factors to bronchopulmonary dysplasia: preliminary data from a multicentre study. J Matern Fetal Neonatal Med. 2012; 25 Suppl 4:127–130. doi: 10.3109/14767058.2012.714995.

97. Rook D, Te Braake FW, Schierbeek H, et al. Glutathione synthesis rates in early postnatal life. Pediatr Res. 2010;67(4):407–411. doi: 10.1203/PDR.0b013e3181d22cf6.


Для цитирования:


Пожарищенская В.К., Давыдова И.В., Савостьянов К.В., Намазова-Баранова Л.С., Павлинова Е.Б., Пушков А.В. Генетическая детерминация формирования бронхолегочной дисплазии: за и против. Педиатрическая фармакология. 2017;14(1):24-32. https://doi.org/10.15690/pf.v14i1.1698

For citation:


Pozharishchenskaya V.K., Davydova I.V., Savostianov K.V., Namazova-Baranova L.S., Pavlinova E.B., Pushkov A.V. Genetic Determination of Bronchopulmonary Dysplasia Formation: Pros and Cons. Pediatric pharmacology. 2017;14(1):24-32. (In Russ.) https://doi.org/10.15690/pf.v14i1.1698

Просмотров: 355


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)