Preview

Педиатрическая фармакология

Расширенный поиск

Влияние различных факторов на ранние этапы формирования кишечной микробиоты

https://doi.org/10.15690/pf.v13i3.1577

Полный текст:

Аннотация

Благодаря современным молекулярно-генетическим методам исследования микробиоты идентифицированы многочисленные, ранее не изученные виды бактерий. В результате существенно изменились представления о микробиоценозе человека, в частности о микробиоте кишечника, в значительной степени определяющей здоровье человека. В последние годы описаны механизмы влияния бактерий на метагеном, эндокринную регуляцию и функцию нервной системы. Формирование кишечной микробиоты на ранних этапах зависит от таких факторов, как осложненное течение беременности, недоношенность, оперативное родоразрешение, позднее прикладывание к груди или искусственное вскармливание с рождения, антибиотикотерапия. Однако, результаты последних исследований свидетельствуют, что воздействие микробного фактора на ребенка начинается задолго до его рождения. Современная научная гипотеза о том, что ряд отклонений в течение беременности и преждевременные роды могут быть вызваны вялотекущим микробным воспалением в полости матки, также сформировалась в связи с изучением микробиоценозов плаценты и амниотических вод. В обзоре представлен анализ последних данных о влиянии как антенатальных, так и постнатальных факторов на ранние этапы формирования кишечной микробиоты у детей.

Об авторах

С. Г. Макарова
Научный центр здоровья детей, Москва, Российская Федерация Первый Московский медицинский государственный университет им. И.М. Сеченова, Москва, Российская Федерация
Россия

доктор медицинских наук, заведующая отделом профилактической педиатрии НЦЗД, профессор кафедры аллергологии и клинической иммунологии Первого МГМУ им. И.М. Сеченова Адрес: 119991, Москва, Ломоносовский пр-т, д. 2, тел.: +7 (495) 967-04-20, доб. 16-03



М. И. Броева
Научный центр здоровья детей, Москва, Российская Федерация
Россия


Список литературы

1. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449(7164):804–810. doi: 10.1038/ nature06244.

2. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, et al. The oral metagenome in health and disease. ISME J. 2011;6(1):46–56. doi:10.1038/ismej.2011.85.

3. Goodacre R. Metabolomics of a superorganism. J Nutr. 2007;137 Suppl 1:S259–266.

4. Payne MS, Bayatibojakhi S. Exploring preterm birth as a polymicrobial disease: an overview of the uterine microbiome. Front Immunol. 2014;5:595. doi: 10.3389/fimmu.2014.00595.

5. Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–336. doi: 10.1038/nature10213.

6. Methe BA, Nelson KE, Pop M, et al. A framework for human microbiome research. Nature. 2012;486(7402):215–221. doi: 10.1038/nature11209.

7. Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. doi: 10.1038/nature11234.

8. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–184. doi: 10.1038/nature11319.

9. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;73(7353):174–180. doi: 10.1038/ nature10187.

10. Jeffery IB, Claesson MJ, O’Toole PW, Shanahan F. Categorization of the gut microbiota: enterotypes or gradients? Nature Rev Microbiol. 2012;10(9):591–592. doi: 10.1038/nrmicro2859.

11. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052): 105–108. doi: 10.1126/science.1208344.

12. Шендеров Б.А. Медицинская микробная экология и функциональное питание. Микрофлора человека и животных и ее функции. Т. 1. — М.: ГРАНТЪ; 1998. — 288 с. [Shenderov BA. Meditsinskaya mikrobnaya ekologiya i funktsional’noe pitanie. Mikroflora cheloveka i zhivotnykh i ee funktsii. V. 1. Moscow: GRANT; 1998. 288 p. (In Russ).]

13. Backhed F. Programming of host metabolism by the gut microbiota. Ann Nutr Metab. 2011;58(Suppl 2):44–52. doi: 10.1159/000328042.

14. Clarke G, Stilling RM, Kennedy PJ, et al. Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–1238. doi: 10.1210/me.2014-1108.

15. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental fac- tor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–15723. doi: 10.1073/pnas.0407076101

16. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–231. doi: 10.1126/ science.1179721.

17. Lyte M. The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses. 2010;74(4):634–638. doi: 10.1016/j.mehy.2009.10.025.

18. Cooperstock MS, Zedd AJ. Intestinal flora of infants. In: Hentges DJ, editor. Human intestinal microflora in health and disease. New York: Academic Press; 1983. p. 79–99.

19. Mackie R, Sghir A, Gaskins R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69(5):1035s–1045s.

20. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4578–4585. doi: 10.1073/ pnas.1000081107.

21. Lim MY, Rho M, Song YM, et al. Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Sci Rep. 2014;4:7348. doi: 10.1038/srep07348.

22. Simoes CD, Maukonen J, Kaprio J, et al. Habitual dietary intake is associated with stool microbiota composition in monozygotic twins. J Nutr. 2013;143(4):417–423. doi: 10.3945/jn.112.166322.

23. Murphy K, O’Shea CA, Ryan CA, et al. The gut microbiota composition in dichorionic triplet sets suggests a role for host genetic factors. PLoS One. 2015;10(4):e0122561. doi: 10.1371/ journal.pone.0122561.

24. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–290. doi: 10.1038/nrmicro2540.

25. Mirpuri J, Raetz M, Sturge CR, et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes. 2014;5(1):28–39. doi: 10.4161/gmic.26489.

26. Yel L. Selective IgA deficiency. J Clin Immunol. 2010;30(1): 10–16. doi: 10.1007/s10875-009-9357-x.

27. Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11(1):76–82. doi: 10.1038/ni.1825.

28. Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell -defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 2005;102(50):18129–18134. doi: 10.1073/pnas.0505256102.

29. Wehkamp J, Wang G, Kubler I et al. The Paneth cell -defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol. 2007;179(5):3109–3118. doi: 10.4049/jimmunol.179.5.3109.

30. Barbosa T, Rescigno M. Host bacteria interactions in the intestine: homeostasis to chronic inflammation. Wiley Interdiscip Rev Syst Biol Med. 2010;2(1):80–97. doi: 10.1002/wsbm.48.

31. De Palma G, Capilla A, Nadal I, et al. Interplay between human leukocyte antigen genes and the microbial colonization process of the newborn intestine. Curr Issues Mol Biol. 2010;12(1):1–10.

32. Khachatryan ZA, Ktsoyan ZA, Manukyan GP, et al. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One. 2008;3(8):e3064. doi: 10.1371/journal.pone.0003064.

33. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455(7216):1109–1113. doi: 10.1038/nature07336.

34. Frank DN, Robertson CE, Hamm CM, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):179–184. doi: 10.1002/ibd.21339.

35. Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015;77(1–2):189–195. doi: 10.1038/pr.2014.163.

36. Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A. 2012;109(2):594–599. doi: 10.1073/ pnas.1116053109.

37. Barbour LA, McCurdy CE, Hernandez TL, et al. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30(Suppl 2):S112–S119. doi: 10.2337/dc07-s202.

38. Kirwan JP, Hauguel-De Mouzon S, Lepercq J, et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51(7):2207–2213. doi: 10.2337/diabetes.51.7.2207.

39. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–445. doi: 10.1146/ annurev-immunol-031210-101322.

40. Nelson SM, Matthews P, Poston L. Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum Reprod Update. 2010;16(3):255–275. doi: 10.1093/humupd/ dmp050.

41. Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–480. doi: 10.1016/j.cell.2012.07.008.

42. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol. 2012;9(4):219–230. doi: 10.1038/nrgastro.2012.14.

43. van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol. 2011;128(5):948–955. e3. doi: 10.1016/j.jaci.2011.07.027.

44. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402): 222–227. doi: 10.1038/nature11053.

45. Harris JW, Brown H. Bacterial content of the uterus at cesarean section. Am J Obstet Gynecol. 1927;13(2):133–143. doi: 10.1016/ s0002-9378(27)90506-7.

46. DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med. 2012;17(1):2–11. doi: 10.1016/j.siny.2011.10.001.

47. Mendz GL, Kaakoush NO, Quinlivan JA. Bacterial aetiological agents of intra- amniotic infections and preterm birth in pregnant women. Front Cell Infect Microbiol. 2013;3:58. doi: 10.3389/ fcimb.2013.00058.

48. Perez PF, Dore J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007;119(3):e724–e732. doi: 10.1542/peds.2006-1649.

49. Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. Dendritic cells shuttle microbes across gut epithelial mono layers. Immunobiology. 2001;204(5):572–581. doi: 10.1078/0171- 2985-00094.

50. Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004; 303(5664):1662–1665. doi: 10.1126/science.1091334.

51. Lelouard H, Fallet M, de Bovis B, et al. Peyer’s patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology. 2012;142(3):592–601.e3. doi: 10.1053/j.gastro.2011.11.039.

52. Jang MH, Kweon MN, Iwatani K, et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A. 2004;101(16):6110–6115. doi: 10.1073/pnas.0400969101.

53. McDole JR, Wheeler LW, McDonald KG, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483(7389):345–349. doi: 10.1038/nature10863.

54. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–12209. doi: 10.1073/pnas.0909122107.

55. Weitkamp JH, Koyama T, Rock MT, et al. Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4, CD8) T cell ratios. Gut.2013;62(1):73–82. doi: 10.1136/gutjnl-2011-301551.

56. Dingle BM, Liu Y, Fatheree NY, et al. FoxP3+ regulatory T cells attenuate experimental necrotizing enterocolitis. PLoS One. 2013; 8(12):e82963. doi: 10.1371/journal.pone.0082963.

57. Prescott SL, Wickens K, Westcott L, et al. Probiotic Study Group. Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-gamma and breast milk transforming growth factor-beta and immunoglobin A detection. Clin Exp Allergy. 2008;38(10):1606–1614. doi: 10.1111/j.1365- 2222.2008.03061.x.

58. Combs CA, Gravett M, Garite TJ, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014;210(2):125.e1–125.e15. doi: 10.1016/j.ajog.2013.11.032.

59. Cassell GH, Davis RO, Waites KB, et al. Isolation of Mycoplasma hominis and Ureaplasma urealyticum from amniotic fluid at 16–20 weeks of gestation: potential effect on outcome of pregnancy. Sex Transm Dis. 1983;10(Suppl 4):294–302.

60. Hillier SL, Martius J, Krohn M, et al. A case control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med. 1988;319(15):972–978. doi: 10.1056/ nejm198810133191503.

61. Gantert M, Jellema RK, Heineman H, et al. Lipopolysaccharideinduced chorioamnionitis is confined to one amniotic compartment in twin pregnant sheep. Neonatology. 2012;102(2):81–88. doi: 10.1159/000338015.

62. Kemp MW, Saito M, Nitsos I, et al. Exposure to in utero lipopolysaccharide induces inflammation in the fetal ovine skin. Reprod Sci. 2011;18(1):88–98. doi: 10.1177/1933719110380470.

63. Abdulkadir AA, Kimimasa T, Bell MJ, et al. Placental inflammation and fetal hemodynamics in a rat model of chorioamnionitis. Pediatr Res. 2010;68(6):513–518. doi: 10.1203/pdr.0b013e3181f851ed.

64. Martinez-Lopez DG, Funderburg NT, Cerissi A, et al. Lipo polysaccharide and soluble CD14 in cord blood plasma are associated with prematurity and chorioamnionitis. Pediatr Res. 2014;75 (1–1):67–74.doi: 10.1038/pr.2013.182.

65. Scheifele DW, Fussell S, Olsen E. Bacterial endotoxins in umbilical cord blood of neonates. Biol Neonate. 1984;45(3):119–124. doi: 10.1159/000241885.

66. Gardella C, Hitti J, Martin TR, et al. Amniotic fluid lipopolysaccharide-binding protein and soluble CD14 as mediators of the inflammatory response in preterm labor. Am J Obstet Gynecol. 2001;184(6):1241–1248. doi: 10.1067/mob.2001.113908.

67. Tapping RI, Tobias PS. Soluble CD14 mediated cellular responses to lipopolysaccharide. Chem Immunol. 2000;74:108–121. doi: 10.1159/000058751.

68. Takahashi N, Uehara R, Kobayashi M, et al. Cytokine profiles of seventeen cytokines, growth factors and chemokines in cord blood and its relation to perinatal clinical findings. Cytokine. 2010;49(3):331–337. doi: 10.1016/j.cyto.2009.11.024.

69. Goepfert AR, Andrews WW, Carlo W, et al. Umbilical cord plasma interleukin-6 concentrations in preterm infants and risk of neonatal morbidity. Am J Obstet Gynecol. 2004;191(4):1375–1381. doi: 10.1016/j.ajog.2004.06.086.

70. Gomez R, Romero R, Ghezzi F, et al. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179(1):194–202. doi: 10.1016/s0002-9378(98)70272-8.

71. Doyle RM, Alber DG, Jones HE, et al. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of deli very. Placenta. 2014;35(12):1099–1101.doi: 10.1016/ j.placenta.2014.10.007.

72. Jimenez E, Marin ML, Martin R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159(3):187–193. doi: 10.1016/j.resmic.2007.12.007.

73. Ardissone AN, de la Cruz DM, Davis-Richardson AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9(3):e90784. doi: 10.1371/ journal.pone.0090784.

74. Moles L, Gomez M, Heilig H, et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One. 2013;8(6):e66986. doi: 10.1371/journal.pone.0066986.

75. Feng T, Elson CO. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 2011;4(1):15–21. doi: 10.1038/ mi.2010.60.

76. Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr. 1999;69(5):1046S-1051S.

77. Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A. 2002;99(24):15451–15455. doi: 10.1073/pnas.202604299.

78. Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013;4(3):203–214. doi: 10.1017/s2040174412000712.

79. Chen Y, Inobe J, Marks R, et al. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature. 1995;376(6536): 177–180. doi: 10.1038/376177a0.

80. Макарова С.Г., Болдырева М.Н., Лаврова Т.Е., Петровская М.И. Кишечный микробиоценоз, пищевая толерантность и пищевая аллергия. Современное состояние проблемы // Вопросы современной педиатрии. — 2014. — Т. 13. — № 3. — С. 21–29. [Makarova SG, Boldyreva MN, Lavrova TYe, Petrovskaya MІ. Intestinal microbiocenosis, food tolerance and food allergy. Current state of a problem. Current pediatrics. 2014;13(3):21–29. (In Russ).] doi: 10.15690/vsp.v13i3.1024.

81. Levy O, Zarember KA, Roy RM. Selective impairment of TLRmediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R- 848. J Immunol. 2004;173(7):4627–4634. doi: 10.4049/jimmunol.173.7.4627.

82. Mshvildadze M, Neu J. The infant intestinal microbiome: friend or foe? Early Hum Dev. 2010;86(1 Suppl):67–71. doi: 10.1016/ j.earlhumdev.2010.01.018.

83. Duffy LC. Interactions mediating bacterial translocation in the immature intestine. J Nutr. 2000;130:432S–436S.

84. Schwiertz A, Gruhl B, Lobnitz M. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breastfed, full term infants. Pediatr Res. 2003;54(3):393–399. doi: 10.1203/01.pdr.0000078274.74607.7a.

85. Millar MR, Linton CJ, Cade A. Application of 16S rRNA gene PCR to study bowel flora of preterm infants with and without necrotizing enterocolitis. J Clin Microbiol. 1996;34(10):2506–2510.

86. Jacquot A, Neveu D, Aujoulat F. Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. J Pediatr. 2011;158(3):390–396. doi: 10.1016/j.jpeds.2010.09.007.

87. Morowitz MJ, Denef VJ, Costello EK. Strain-resolved community genomic analysis of gut microbial colonization in a premature infant. Proc Natl Acad Sci U S A. 2011;108(3):1128– 1133. doi: 10.1073/pnas.1010992108.

88. Rouge C, Goldenberg O, Ferraris L. Investigation of the intestinal microbiota in preterm infants using different methods. Anaerobe. 2010;16(4):362–370. doi: 10.1016/j.anaerobe.2010.06.002.

89. Milisavljevic V, Garg M, Vuletic I, et al. Prospective assessment of the gastroesophageal microbiome in VLBW neonates. BMC Pediatrics. 2013;13:49. doi: 10.1186/1471-2431-13-49.

90. Huurre A, Kalliomaki M, Rautava S, et al. Mode of delivery — effects on gut microbiota and humoral immunity. Neonatology. 2008;93(4):236–240. doi: 10.1159/000111102.

91. Azad MB, Konya T, Maughan H, et al. CHILD Study Investigators. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185:385–394. doi: 10.1503/cmaj.121189.

92. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975. doi: 10.1073/ pnas.1002601107.

93. Laubereau B, Filipiak-Pittroff B, von Berg A, et al. Caesarean section and gastrointestinal symptoms, atopic dermatitis and sensiti zation during the first year of life. Arch Dis Child. 2004;89: 993–997. doi: 10.1136/adc.2003.043265.

94. Renz-Polster H, David MR, Buist AS, et al. Caesarean section delivery and the risk of allergic disorders in childhood. Clin Exp Allergy. 2005;35(11):1466–1472. doi: 10.1111/j.1365- 2222.2005.02356.x.

95. Thavagnanam S, Fleming J, Bromley A, et al. A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy. 2008;38(4):629–633. doi: 10.1111/j.1365-2222.2007.02780.x.

96. Kristensen K, Henriksen L. Cesarean section and disease associated with immune function. J Allergy Clin Immunol. 2016;137(2): 587–590. doi: 10.1016/j.jaci.2015.07.040.

97. Adlerberth I, Strachan DP, Matricardi PM, et al. Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol. 2007;120(2):343–350. doi: 10.1016/ j.jaci.2007.05.018.

98. Hall MA, Cole CB, Smith SL, et al. Factors influencing the presence of faecal lactobacilli in early infancy. Arch Dis Child. 1990;65(2):185–188. doi: 10.1136/adc.65.2.185.

99. Westerbeek EA, van den Berg A, Lafeber HN, et al. The intestinal bacterial colonisation in preterm infants: a review of the literature. Clin Nutr. 2006;25(3):361–368. doi: 10.1016/j.clnu.2006.03.002.

100. Fouhy F, Guinane CM, Hussey S, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 2012;56(11): 5811–5820. doi: 10.1128/aac.00789-12.

101. Bonnemaison E, Lanotte P, Cantagrel S, et al. Comparison of fecal flora following administration of two antibiotic protocols for suspected maternofetal infection. Biol Neonate. 2003;84(4): 304–310. doi: 10.1159/000073639.

102. Jernberg C, Lofmark S, Edlund C. Long term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66. doi: 10.1038/ismej.2007.3.

103. Kronman MP, Zaoutis TE, Haynes K, et al. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012;130(4):e794–e803. doi: 10.1542/ peds.2011-3886.

104. Martin R, Langa S, Reviriego C, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143(6): 754–758. doi: 10.1016/j.jpeds.2003.09.028.

105. Murgas Torrazza R, Neu J. The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol. 2011;31(Suppl 1):S29–S34. doi: 10.1038/jp.2010.172.

106. Heinig MJ. Host defense benefits of breastfeeding for the infant. Effect of breastfeeding duration and exclusivity. Pediatr Clin North Am. 2001;48(1):105–123. doi: 10.1016/s0031-3955(05)70288-1.

107. Sharon M, Wang DM, Li M, et al. Host microbe interactions in the neonatal intestine: role of human milk oligosaccharides. Adv Nutr. 2012;3(3):450–455. doi: 10.3945/an.112.001859.

108. De Leoz ML, Gaerlan SC, Strum JS. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res. 2012;11(9):4662–4672. doi: 10.1021/pr3004979.

109. Turroni F, Milani C, van Sinderen D, Ventura M. Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human-microbe co-evolution. Gut Microbes. 2011;2(3):183–189. doi: 10.4161/gmic.2.3.16105.

110. Sela DA, Chapman J, Adeuya A, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A. 2008;105(48):18964–18969. doi: 10.1073/pnas.0809584105.

111. Frei R, Lauener RP, Crameri R, O’Mahony L. Microbiota and dietary interactions — an update to the hygiene hypothesis? Allergy. 2012;67(4):S451461. doi: 10.1111/j.1398- 9995.2011.02783.x.

112. Cummings JH, Macfarlane GT. Gastrointestinal effects of prebiotics. Br J Nutr. 2002;87(Suppl 2):S145–S151. doi: 10.1079/ bjn/2002530.

113. Russel FD, Burgin-Maunder CS. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar Drugs. 2012;10(11):2535–2559. doi: 10.3390/md10112535.

114. Field C, Van Aerde J, Robinson L, Clandinin MT. Effect of providing a formula supplemented with long-chain polyunsaturated fatty acids on immunity in full term neonates. Br J Nutrition. 2008;99(1):91–99. doi: 10.1017/s0007114507791845.

115. Erbacher A, Gieseke F, Handgretinger R, Muller I. Dendritic cells: functional aspectsof glycosylation and lectins. Hum Immunol. 2009;70(5):308–312. doi: 10.1016/j.humimm.2009.02.005.

116. de Kivit S, Kraneveld AD, Garssen J, Willemsen LEM. Glycan recognition at the interface of the intestinal immune system: target for immune modulation via dietary components. Eur J Pharmacol. 2011;668(Suppl 1):S124–S132. doi: 10.1016/ j.ejphar.2011.05.086.

117. Конь И.Я., Куркова В.И., Абрамова Т.В., и др. Результаты мультицентрового исследования клинической эффективности сухой адаптированной молочной смеси с пищевыми волокнами в питании детей первого года жизни // Вопросы практической педиатрии. — 2010. — Т.5. — №2. — С. 29–37. [Kon’ IYa, Kurkova VI, Abramova TV, et al. Results of a multi-centered study of the clinical efficacy of a powdered adapted fiber- containing milk formula in nutrition of infants of the first year of life. Problems of practical pediatrics. 2010;5(2):29–37. (In Russ).]

118. Rao S, Srinivasjois R, Patole S. Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch Pediatr Adolesc Med. 2009;163(8):755–764.doi: 10.1001/archpediatrics.2009.94.

119. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the essential composition of infant and followon formulae. European Food Safety Authority (EFSA), Parma, Italy EFSA Journal. 2014;12(7):3760

120. Боэм Г, Моро Г, Фанаро С., и др. Содержание галактоолигосахаридов как пребиотиков в смесях для искусственного вскармливания. Вопросы детской диетологии. — 2005. — Т. 3. — № 4. — С. 29–37. [Boehm G, Moro G, Fanaro S, et al. Galactooligosaccharides and long chain fructo-oligosaccharides as prebiotics in infant formulas: a review. Problems of pediatric nutritiology. 2005;3(4):29–37. (In Russ).]

121. Gruber C, van Stuijvenberg M, Mosca F, et al. Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low atopy risk infants. J Allergy Clin Immunol. 2010;126(4):791–797. doi: 10.1016/j.jaci.2010.07.022.

122. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria: Report of a Joint FAO WHO Expert Consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba; 2001. 34 p.

123. Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. In: R.J. Siezen, J. Kok, T. Abee, G. Schasfsma, editors. Lactic acid bacteria: genetics, metabolism and applications. Springer Netherlands; 2002. pp. 279–289. doi: 10.1007/978-94- 017-2029- 8_18.

124. Gorbach SL. Probiotics in the third millennium. Digest Liver Dis. 2002;34(Suppl 2):S2– S7. doi: 10.1016/s1590-8658(02) 80155-4.

125. McFarland. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 2006;101(4):812–822. doi: 10.1111/j.1572-0241.2006.00465.x.

126. Корниенко Е.А. Современные принципы выбора пробиотиков // Детские инфекции. — 2007. — Т.6. — №3. — С. 64–69. [Kornienko EA. Modern principles of selecting suitable probiotics. Detskie infektsii. 2007;6(3):64–69. (In Russ).]

127. Holzapfel WH, Haberer P, Geisen R, et al. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr. 2001;73(Suppl 2):365–373.

128. Favier СF, de Vos WM, Akkermans AD. Development of bacterial and bifidobacterial communities infeces ofnewborn babies. Anaerobe. 2003;9(5):219–229. doi: 10.1016/j.anaerobe. 2003.07.001.

129. Butel MJ, Suau A, Campeotto F, et al. Conditions of bifidobacterial colonization in preterm infants: a prospective analysis. J Ped Gastroenterol Nutr. 2007;44(5):577–582. doi: 10.1097/ mpg.0b013e3180406b20.

130. Rijkers GT, Bengmark S, Enck P, et al. Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J Nutr. 2010;140(3):671–676. doi: 10.3945/jn.109.113779.

131. Patten DA, Laws AP. Lactobacillus produced exopolysaccharides and their potential health benefits: a review. Benef Microbes. 2015;6(4):457–471. doi: 10.3920/bm2014.0117.

132. Holmes E, Kinross J, Gibson GR, et al. Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl. 2012;4(137):137rv6. doi: 10.

133. Lin HC, Su BH, Chen AC, et al. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics. 2008;122(4):693–700. doi: 10.1542/ peds.2007-3007.1126/scitranslmed.3004244.

134. Szajewska H, Guandalini S, Morelli L, et al. Effect of bifidobacterium animalis subsp lactis supplementation in preterm infants: a systematic review of randomized controlled trials. JPGN. 2010;51(2):203–209. doi: 10.1097/mpg.0b013e3181dc0d93.

135. AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2014;9(3):584–671. doi: 10.1002/ebch.1976.

136. Hoyos AB. Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int J Infect Dis. 1999;3(4):197–202. doi: 10.1016/s1201- 9712(99)90024- 3.

137. Millar M, Wilks M, Costeloe K. Probiotics for preterm infants? Arch Dis Child Fetal Neonatal Ed. 2003;88(5):F354–358. doi: 10.1136/fn.88.5.F354.

138. Versalovic J. The human microbiome and probiotics: Implications for pediatrics. Ann Nutr Metab. 2013;63(Suppl 2): 42–52. doi: 10.1159/000354899.

139. Issa I, Moucari R. Probiotics for antibiotic-associated diarrhea: Do we have a verdict? World J Gastroenterol. 2014;20(47):17788– 17795. doi: 10.3748/wjg.v20.i47.17788

140. Goldenberg JZ, Ma SS, Saxton JD, et al. Probiotics for the prevention of Clostridium difficile -associated diarrhea in adults and children. Cochrane Database Syst Rev. 2013; (5):CD006095. doi:10.1002/14651858.cd006095.pub3.

141. Piescik-Lech M, Shamir R, Guarino A, Szajewska H. Review article: the management of acute gastroenteritis in children. Aliment Pharmacol Ther. 2013;37(3):289–303. doi: 10.1111/ apt.12163.

142. Thomas DW, Greer FR. Probiotics and prebiotics in pediatrics. Pediatrics. 2010;126(6):1217–1231. doi: 10.1542/peds. 2010-2548.


Для цитирования:


Макарова С.Г., Броева М.И. Влияние различных факторов на ранние этапы формирования кишечной микробиоты. Педиатрическая фармакология. 2016;13(3):270-282. https://doi.org/10.15690/pf.v13i3.1577

For citation:


Makarova S.G., Broeva M.I. Different Factors Influencing Early Stages of Intestine Microbiota Formation. Pediatric pharmacology. 2016;13(3):270-282. (In Russ.) https://doi.org/10.15690/pf.v13i3.1577

Просмотров: 334


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)